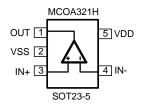


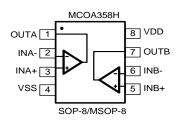
1MHZ High Voltage Bipolar Opamp

1 Features

- Single-Supply Operation from +3V ~ +36V
 Rail-to-Rail Input / Output from ±1.5V ~ ±18V
- Gain-Bandwidth Product: 1MHz (Typ)
- Low Input Bias Current: 20nA (Typ)
- Low Offset Voltage: 5mV (Max)
- Quiescent Current: 250µA per Amplifier (Typ)
- Operating Temperature: -25°C ~ +85°C
- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing:0V to Vcc-1.5V
- Small Package:
 - MCOA321H Available in SOT23-5
 Package
 - MCOA358H Available in SOP-8 and MSOP-8 Packages
 - MCOA324H Available in SOP-14
 Package

2 Applications


- Walkie-Talkie
- · Battery Management Solution
- Transducer Amplifiers
- Summing Amplifiers
- Multivibrators
- Oscillators
- Switching Telephone
- Portable Systems


3 Description

The MCOA321H/MCOA358H/MCOA324H family have a high gain-bandwidth product of 1MHz, a slew rate of 0.2V/µs, and a quiescent current of 250µA/amplifier at 5V. The MCOA321H/MCOA358H/MCOA324H family is designed to provide optimal performance in low voltage and low noise systems. The maximum input offset voltage is 5mV for MCOA321H/358H/324H family.The operating range is from 3V to 36V. The MCOA321H single is available in Green SOT-23-5 package. The MCOA358H Dual is available in Green SOP-8 and MSOP-8 packages. The MCOA324H Quad is available in Green SOP-14 package.

4 Pin Configuration

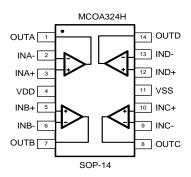


Figure 1. Pin Assignment Diagram

5 Specifications

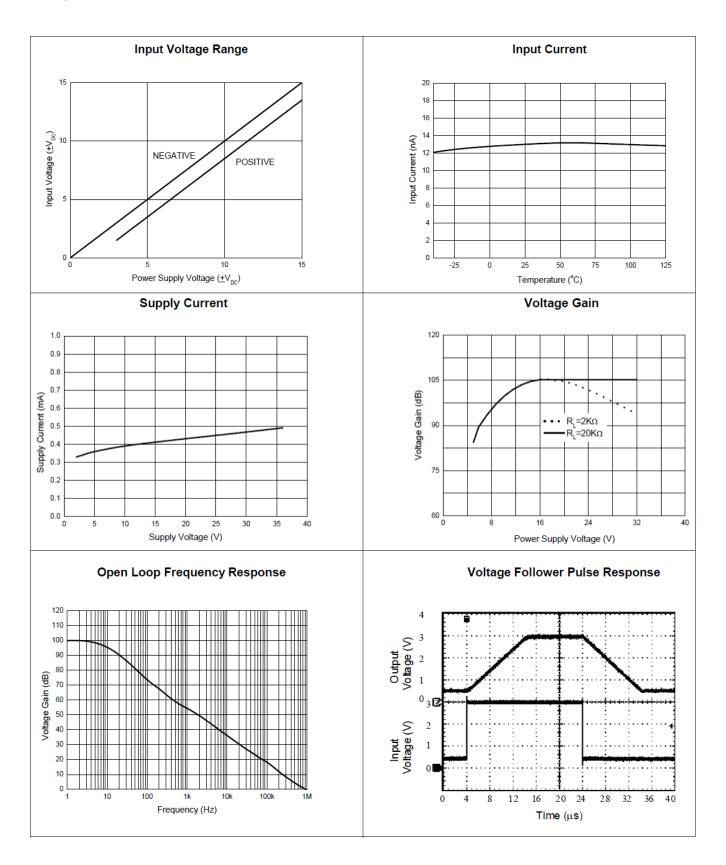
5.1 Absolute Maximum Ratings

		MIN	TYP	MAX	UNIT
V _{CC}	Power Supply voltage	-20		20,40	V
V _{I(DIFF)}	Differential input voltage		40		V
VI	Input Voltage	-0.3		40	V
T _{opr}	Operating Temperature Range	-25		85	°C
T _{stg}	Storage temperature range	-65		150	°C

NOTE: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

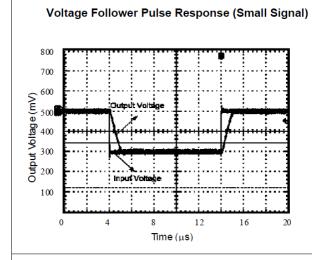
www.szmmic.com 2

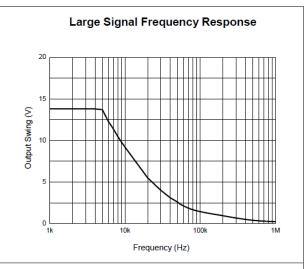
5.2 Electrical Characteristics


At Vs = +15V, TA=25°C, unless otherwise noted.)

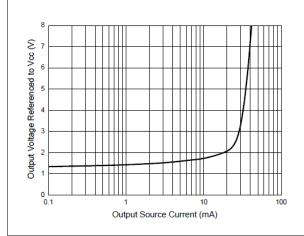
			MCOA321H/MCOA358H/MCOA324H			
PARAMETER	SYMBOL	CONDITIONS	TYP	MIN/MAX	OVER TEN	//PERATURE
			+25℃	+25℃	UNITS	MIN/MAX
INPUT CHARACTERISTICS					•	
Input Offset Voltage	Vos	V _{CM} = V _S /2	0.4	5	mV	MAX
Input Bias Current	I _B		20		nA	TYP
Input Offset Current	los		5		nA	TYP
Common-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1 to +4		V	TYP
Common-Mode Rejection Ratio	CMRR	V _{CM} = 0V to Vs-1.5V	70	60	dB	MIN
Open-Loop Voltage Gain	A _{OL}	$R_L = 5k\Omega$, $V_O = 1V$ to 11V	100	85	dB	MIN
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$		7		μV/°C	TYP
OUTPUT CHARACTERISTICS						
	V _{OH}	$R_L = 2k\Omega$	11		V	MIN
Output Voltage Swing from Rail -	V _{OL}	$R_L = 2k\Omega$	5	20	mV	MAX
Output voltage Swilly Holli Naii -	V _{OH}	$R_L = 10k\Omega$	12	13	V	MIN
	V _{OL}	$R_L = 10k\Omega$	5	20	mV	MAX
Output Current	I _{SOURCE}	$R_L = 10\Omega$ to $V_S/2$	40	60	mA	MAX
Output Guitein	I _{SINK}	- 1012 to Vg/2	40	60] "'``	
POWER SUPPLY						
Operating Voltage Range				3	V	MIN
Operating voltage Nange				36	V	MAX
Power Supply Rejection Ratio	PSRR	$V_S = +5V \text{ to } +36V, V_{CM} = +0.5V$	100	70	dB	MIN
Quiescent Current / Amplifier	ΙQ	V _S = 36V, RL=∞	0.25	2.0	mA	MAX
DYNAMIC PERFORMANCE	I	l	_1	ı	1	
Gain-Bandwidth Product	GBP		1		MHz	TYP
Slew Rate	SR	G = +1, 2V Output Step	0.2		V/µs	TYP

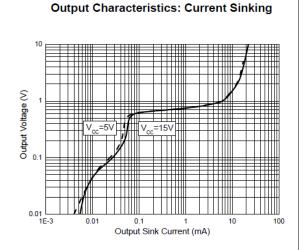
3

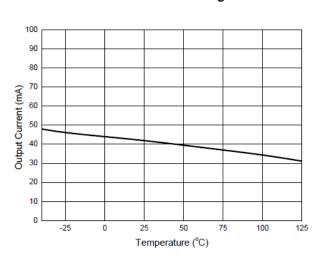

5.3 Typical Performance characteristics



www.szmmic.com 4




5.3 Typical Performance characteristics(continued)



Current Limiting

6 Application

Note

Size

MCOA321H/358H/324H family series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the MCOA321H/358H/324H family packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

MCOA321H/358H/324H family series operates from a single 3V to 36V supply or dual ± 1.5 V to ± 18 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation,both V_{DD} and Vss to ground with separate 0.1μ F ceramic capacitors.

Low Supply Curren

The low supply current (typical 250µA per channel) of MCOA321H/MCOA358H/MCOA324H family will help to maximize battery life.

Operating Voltage

MCOA321H/MCOA358H/MCOA324H family operates under wide input supply voltage (3V to 36V). In addition, all temperature specifications apply from -25 oC to +85 oC. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ionbattery lifetime.

Capacitive Load Tolerance

The MCOA321H/MC358/MCOA324H family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create apole amplifier's feedback in the to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1)using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain series resistor strategy. resistor isolates the follower using the The output from capacitanceand, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

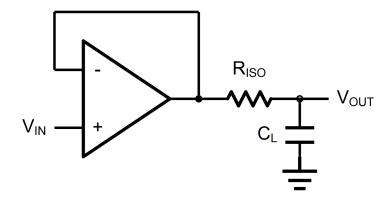


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the R_{ISO} resistor value, the more stable V_{OUT} will be. However, if there is a resistive load R_L in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L. C_Fand R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F. This in turn will slow down the pulse response

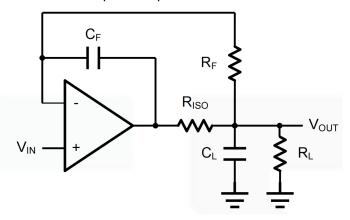


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

6.1 Typical Application Circuits

6.1.1 Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4.shown the differential amplifier using MCOA321H/MCOA358H/MCOA324H family.

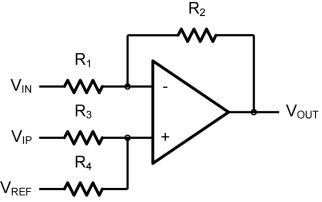


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_3 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R1=R3 and R2=R4), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

6.1.2 Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f = 1/(2 R_3C_1)$.

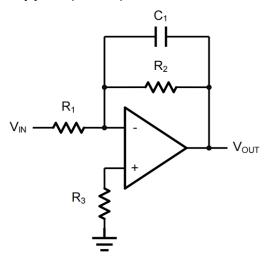
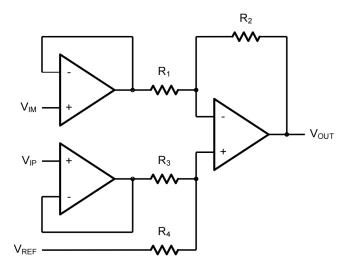
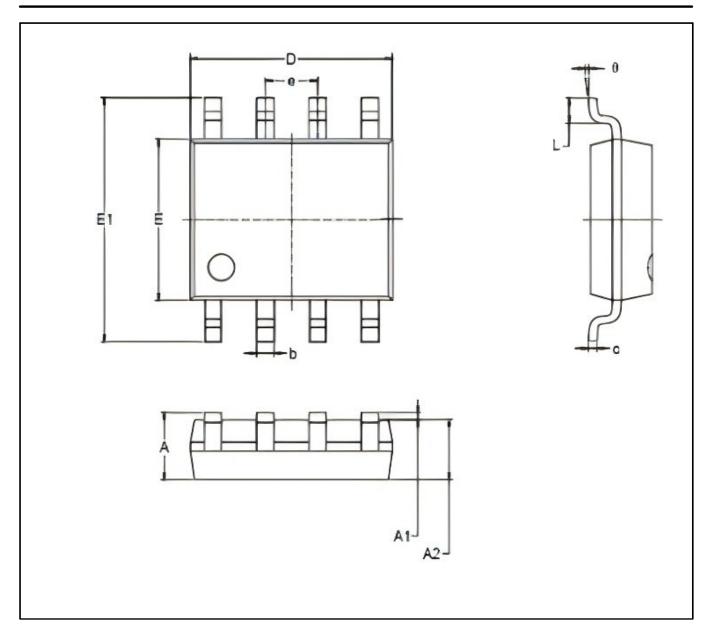
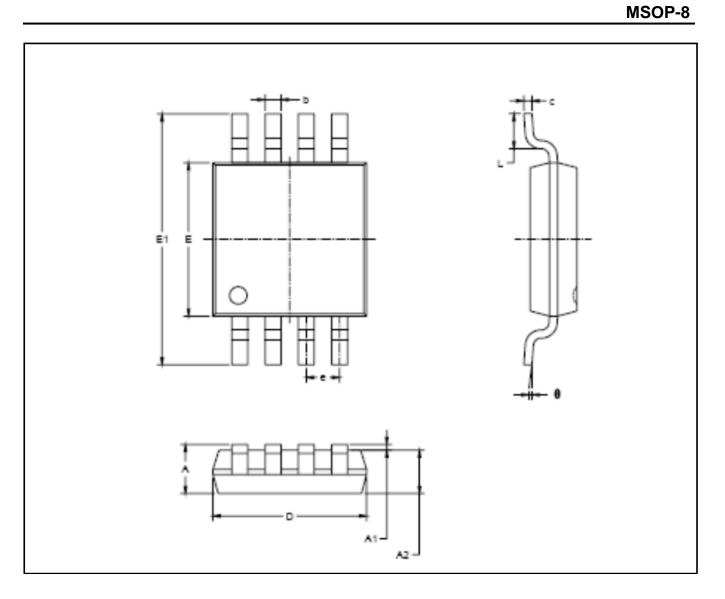


Figure 5. Low Pass Active Filter

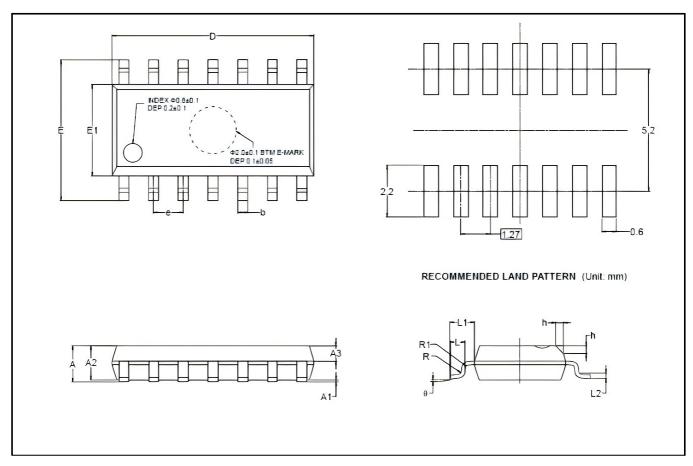
6.1.3 Instrumentation Amplifier

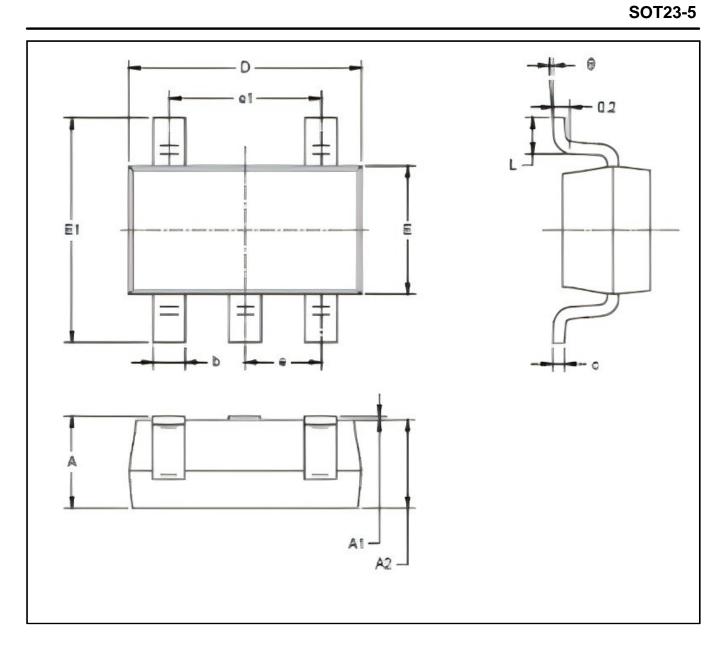
The triple MCOA321H/MCOA358H/MCOA324H family can be used to build a three-op-amp instrumentation amplifier as shown in Figure 6. The amplifier in Figure 6 is a high input impedance differential amplifier with gain of R2/R1. The two differential voltage followers assure the high input impedance of the amplifier.


Figure 6. Instrument Amplifier

PACKAGE/ORDERING INFORMATION


MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
MCOA321H	Single	MCOA321H-TR	SOT23-5	Tape and Reel,3000	MCOA321H
MCOA358H	H Dual	MCOA358H-SR	SOP-8	Tape and Reel,4000	MCOA358H
WCCASSOIT	Duai	MCOA358H-MR	MSOP-8	Tape and Reel,3000	MCOA358H
MCOA324H	Quad	MCOA324H-SR	SOP-14	Tape and Reel,2500	MCOA324H


Symbol	Dimen	sions In Millimeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 BSC		0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Symbol	Dimen	sions In Millimeters	Dimension	s In Inches
	MIN	MAX	MIN	MAX
Α	0.820	1.100	0.032	0.043
A1	0.020	0.150	0.001	0.006
A2	0.750	0.950	0.030	0.037
b	0.250	0.380	0.010	0.015
С	0.090	0.230	0.004	0.009
D	2.900	3.100	0.114	0.122
Е	2.900	3.100	0.114	0.122
E1	4.750	5.050	0.187	0.199
е	0.650 BSC		0.026	BSC
L	0.400	0.800	0.016	0.031
θ	0°	6°	0°	6°

Symbol	Dimensions In Millimeters		Dimensions In Inches			
	MIN	MOD	MAX	MIN	MOD	MAX
Α	1.350		1.750	0.053		0.069
A1	0.100		0.250	0.004		0.010
A2	1.250		1.650	0.049		0.065
A3	0.550		0.750	0.022		0.030
b	0.360		0.490	0.014		0.019
D	8.530		8.730	0.336		0.344
E	5.800		6.200	0.228		0.244
E1	3.800		4.000	0.150		0.157
е		1.270 BSC		0.050 BSC		
L	0.450		0.800	0.018		0.032
L1		1.040 REF		0.040 REF		
L2		0.250 BSC	1		0.010 BSC	1
R	0.070			0.003		
R1	0.070			0.003		
h	0.300		0.500	0.012		0.020
θ	0°		8°	0°		8°

Symbol	Dimen	sions In Millimeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950 BSC		0.037 BSC		
e1	1.900 BSC		0.075	BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	