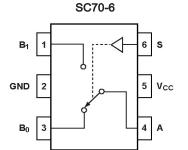
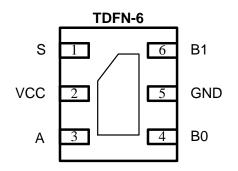


Low-Voltage, 2.8Ω SPDT Analog Switch


1 Features


- CMOS Technology for Bus and Analog Applications
- Low ON Resistance: 3-ohms @ 2.7V
- Wide VCC Range: 1.65V to 5.5V
- Rail-to-Rail Signal Range
- Control Input Overvoltage Tolerance: 5.5V min.
- High Off Isolation: 57dB at 10MHz
- 54dB (10MHz) Crosstalk Rejection Reduces Signal Distortion
- Break-Before-Make Switching
- High Bandwidth: 300 MHz
- Extended Industrial Temperature Range: 40°C to 85°C
- Improved Direct Replacement for NC7SB4157
- Packaging (Pb-free & Green available):SC70-6,TDFN-6

2 Applications

- Battery-Operated Equipment
- Computer Peripheral
- Portable Systems
- Cell Phones
- PDAs

3. Connection Diagram(Top View)

3 Description

The MCS4157/4157B is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch . Specified over a wide operating power supply voltage range, 1.65V to 5.5V, the MCS4157/4157B has a maximum ON resistance of 5. 1-ohms at 1.65V, 3.9-ohms at 2.3V & 2.85-ohms at 4.5V. Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.

The control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

MCS4157/4157B is an improved direct replacement for the FSA4157/NC7SB4157

Pin Description

Name	Description
S	Logic Control
Vcc	Positive Power Supply
A	Common Output/Data Port
В0	Data Port (Normally Closed)
GND	Ground
B1	Data Port

Logic Function Table

Logic Input (S)	Function
0	B0 Connected to A
1	B1 Connected to A

5 Specifications

5.1 Absolute Maximum Ratings⁽¹⁾

Condition	VALUE
Supply Voltage Vcc	– 0.5V to +7V
DC Switch Voltage (Vs) (2).	-0.5V to VCC +0.5V
DC Input Voltage (VIN) (2)	-0.5V to +7.0V
DC VCC or Ground Current (Icc/IGND)	±100mA
DC Output Current (Vout)	128mA
Storage Temperature Range (Tstg)	– 65°C to +150°C
Junction Temperature under Bias (TJ)	150°C
Junction Lead Temperature (TL) (Soldering, 10 seconds)	260°C
Power Dissipation (PD) @ +85°C	180mW

5.2 Recommended Operating Conditions⁽³⁾

Condition	VALUE
Supply Voltage Operating Vcc	1.65V to 5.5V
Control Input Voltage (Vin)	- 0.5V to VCC +0.5V
Switch Input Voltage (Vin)	-0.5V to +7.0V
Output Voltage (Vouт)	±100mA
Operating Temperature (T _A)	128mA
Thermal Resistance (θ _{JA})	-65°C to +150°C

Note 1:Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Note 2:The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed. Note 3:Control input must be held HIGH or LOW; it must not float.

5.3 DC ELECTRICAL CHARACTERISTICS (TA = -40°C to +85°C)

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Units	
Viar	Analog Input Signal Range		Vcc	T _A = 25°C & –40°C to 85°C	0		Vcc	V	
Ron	ON Resistance ⁽⁴⁾	I _{out} = 100mA, Bo or B1=1.5V	2.7V	T _A = 25°C		3	4.5	Ω	
R _{ON}	ON Resistance ⁽⁴⁾	I _{out} = 100mA, B0 or B1=3.5V	4.5V	$T_A = 25^{\circ}C$			3		
ΔR_{ON}	ON Resistance Match Between Channels ^(4,5,6)	I _{out} = 100mA, B0=B1=1.5V	2.7V	T _A = 25°C			0.75	Ω	
Ronf	ON Resistance ^{(4,5,} ⁷⁾ Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 1.5V	2.7V	T _A = 25°C			1.5	Ω	
Ronf	ON Resistance ^{(4,5,} ⁷⁾ Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 3.0V,	4.5V	T _A = 25°C			0.5	Ω	
ViH	Input High		V _{CC} = 1.65V to 1.95V	T _A = 25°C &	1.5			v	
VIH	Voltage	Logic High Level	V _{CC} = 2.3V to 5.5V	–40°C to 85°C	1.7				
VIL	Input Low	Logic Low Level	V _{CC} = 1.65V to 1.95V				0.5	V	
	Voltage		V _{CC} = 2.3V to 5.5V				0.8		
I _{IN}	Input Leakage	0 ≤V _{IN} ≤5.5V	$V_{CC} = 0V$	T _A = 25°C			±0.1		
IIN	Current	0 2 0 10 20.0 0	to 5.5V	T _A = −40°C to 85°C			±1.0		
IOFF	OFF State Leakage Current	A=1V,4.5V, B0 or B1=4.5V, 1V	V _{CC} = 5.5V	T _A = 25°C	-2.0		2.0	μA	
lcc	All channels ON or Quiescent OFF, VIN = VCC or	OFF, VIN = VCC or	Vcc =	T _A = 25°C			1		
	Supply Current	GND, I _{OUT} = 0	5.5V	T _A = −40°C to 85°C			10		

Note 4: Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B)

Note 5: Parameter is characterized but not tested in production.

Note 6: DRON = RON max ~ RON min. measured at identical VCC, temperature and voltage levels. Note 7: Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions.. Note 8: Guaranteed by design.

MCS4157/4157B

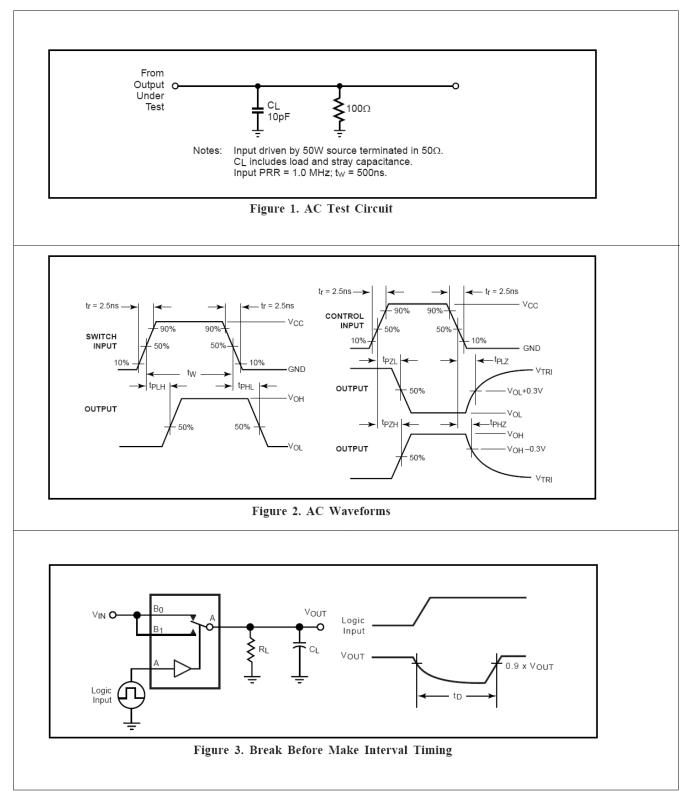
5.4 CAPACITANCE (12)

Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Units
C _{IN}	Control Input					2.3		
C _{IO-B}	For B Port,Switch OFF	f= 1 MHz ⁽¹²⁾	$V_{CC} = 5.0V$	T _A = 25°C		6.5		pF
CIOA-ON	For A Port, Switch ON					18.5		

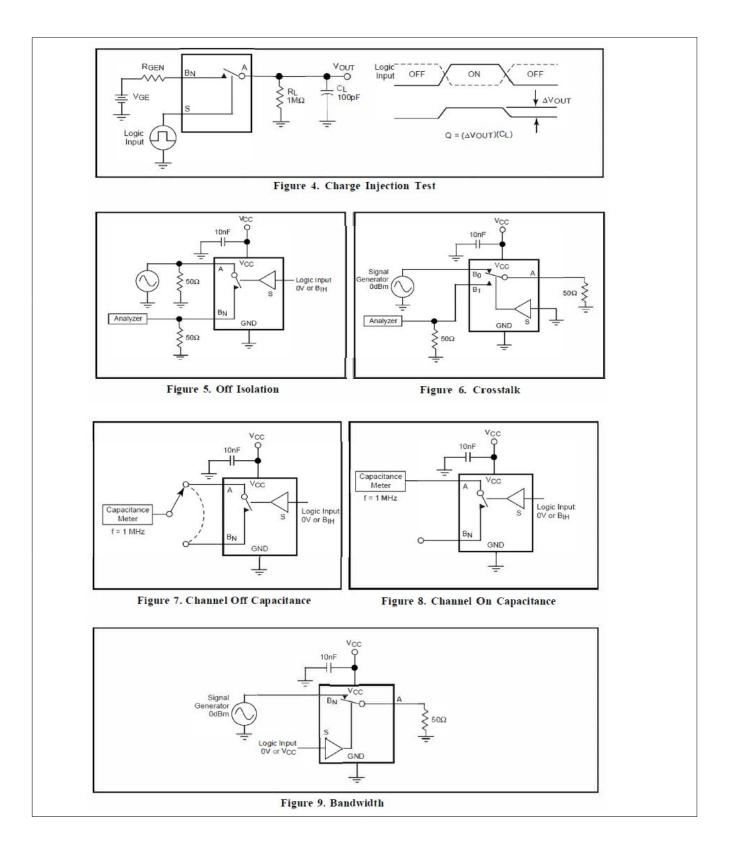
5.5 SWITCH AND AC CHARACTERISTICS

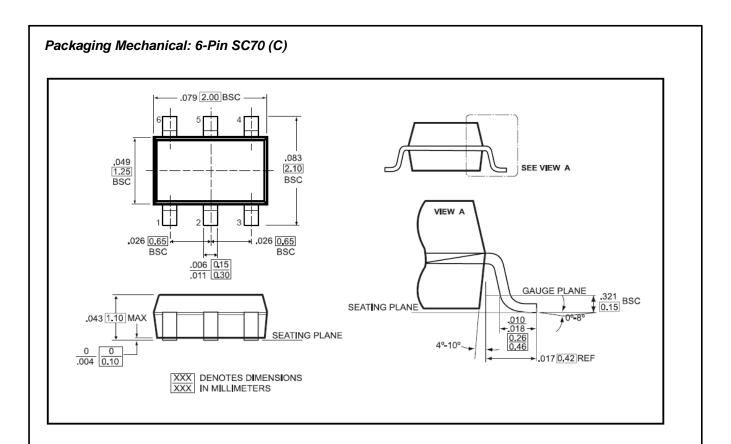
Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Units	
			V _{CC} = 2.3V to 2.7V			1.2			
t _{PLH} t _{PHL}	Propagation Delay: A to	See test circuit diagrams 1 and 2. V_1	V _{CC} = 3.0V to 3.6V	T _A = 25°C & –40 to 85°C		0.8			
	Bn	Open ⁽¹⁰⁾	V _{CC} = 4.5V to 5.5V			0.3			
			V _{CC} = 1.65V to 1.95V		7		23		
t _{PZL}	Output Enable Turn	diagrams 1 & 2. See test circuit	V _{CC} = 2.3V to 2.7V	T _A = 25°C	3.5		13		
t _{PZH}	ON Time: A to Bn	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V		2.5		6.9	ns	
			V _{CC} = 4.5V to 5.5V		1.7		5.2		
			V _{CC} = 2.5V				24		
tPZL	OUTPUT	BLE diagrams 1 and 2. VI = 2Vcc for TPZL, ME: VI = 0V for tagu	V _{CC} = 3.3V	T _A = 25°C & −40 to 85°C			14		
t _{PZH}	t _{PZH} NOTIME:		V _{CC} = 3.0V to 3.6V				7.6		
	A TO BN		V _{CC} = 4.5V to 5.5V				5.7		
	Outrut	Output See test siz		V _{CC} = 1.65V to 1.95V		3		12.5	
tPLZ	Disable	See test circuit diagrams 1 and 2.	$V_{CC} = 2.3 V$ to 2.7V	T _A = 25°C	2		7		
t PHZ	OFF Time:		V _{CC} = 3.0V to 3.6V		1.5		5		
			V_{CC} = 4.5V to 5.5V		0.8		3.5		
	Output Disable Turn		$V_{CC} = 2.5V$				13		
tPLZ		See test circuit diagrams 1 and 2.	$V_{CC} = 3.3V$	$T_A = -40$ to			7.5		
t PHZ	OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	85°C			5.3		
	A to Bn		$V_{CC} = 4.5 V$ to 5.5 V				3.8		
			$V_{CC} = 2.5V$	T _A = 25°C & -40 to 85°C	0.5				
tou	Break Before	See test circuit	$V_{CC} = 3.3V$		0.5				
t _{BM}	Make Time	diagram () (9)	$V_{CC} = 3.0V \text{ to } 3.6V$		0.5				
			VCC = 4.5V to 5.5V		0.5				

5.5 SWITCH AND AC CHARACTERISTICS (Cont.)

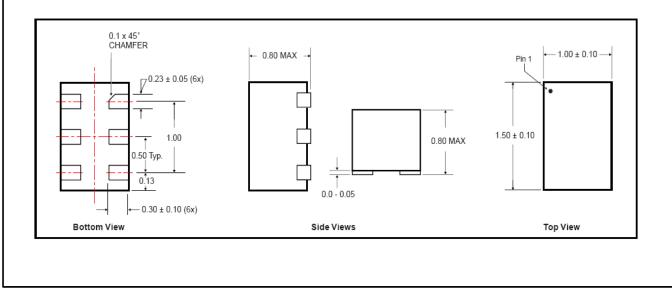

Parameter	Description	Test Conditions	Supply Voltage	Temp (ºC)	Min.	Тур	Max.	Units
Q	Charge	$C_L = 0.1 nF, V_{GEN} =$	V _{CC} = 5.0V	T _A = 25°C		7		
	Injection	0V, R _{GEN} = 0Ω. See test circuit 4.	VCC = 3.3V	TA = 25 C		3		рС
OIRR	Off Isolation	$\label{eq:RL} \begin{split} R_L &= 50\Omega, V_{GEN} = 0V, \\ R_{GEN} &= 0\Omega. \ \text{See test} \\ \text{circuit 5.} \ ^{(11)} \end{split}$	V _{CC} = 1.65V to 5.5V	T _A = 25°C		-57		dB
X _{TALK}	Crosstalk Isolation	See test circuit 6.	$V_{CC} = 1.65V \text{ to } 5.5V$	T _A = 25°C		-54		
f _{3dB}	–3dB Bandwidth	See test circuit 9	V _{CC} = 1.65V to 5.5V	T _A = 25°C		300		MHz

Note 6: Guaranteed by design


Note 7: Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance, when driven by an ideal voltage source with zero output impedance. Note 8: Off Isolation = 20 Log10 [V_A / V_{Bn}] and is measured in dB. Note 9: TA = 25°C, f = 1MHz. Capacitance is characterized but not tested in production.



Parameter Measurement Information



Packaging Mechanical: 6-Pin TDFN

Ordering Code	Package Description	Temperature Range	Top Marking
MCS4157-CR	6-pin SC70	–40°C to +85°C	ABG
MCS4157-FR	6-pin TDFN 1.45X1	–40°C to +85°C	ABG